Autosomal recessive primary microcephaly (MCPH):

Characterized by:
- congenital microcephaly (3 SD below the mean at birth or at least 4 SD below the mean at later ages)
- mental retardation (MR), but no other neurological findings (febrile or other mild seizures do not exclude the diagnosis)
- normal or mildly short stature that is less severe than the markedly small head circumference
- normal weight and appearance except for the microcephaly

Brain imaging shows a mildly reduced number of gyri, and in some patients may also demonstrate agenesis of the corpus callosum or a few periventricular nodular heterotopia (numerous heterotopia suggest an alternative diagnosis). Prenatally, individuals have normal head size until approximately 20 weeks and decreased head size by 32 weeks, although this varies. The relative degree of microcephaly doesn’t vary throughout life and doesn’t vary within a family by more than 2 SD. MR is usually mild to moderate with no progressive decline or motor deficit [1].

Mutations in the **ASPM** [OMIM #605481] gene are the most common cause of MCPH [2]. Approximately 40% of patients (both consanguineous and non-consanguineous) with a strict diagnosis of MCPH have mutations in **ASPM**. However, very few patients (<10%) with a less restrictive phenotype have mutations in **ASPM** [3]. Thus, we expect a high detection rate for high-functioning MCPH, but a lower detection rate for low-functioning MCPH, especially if associated with other anomalies. To date, over 85 mutations have been reported in the **ASPM** gene, spanning most of the 28 coding exons. Most **ASPM** mutations are predicted to result in a truncated protein. There is no correlation between the genotype and the degree of microcephaly or MR [3]. Asp, the Drosophila ortholog of **ASPM**, is necessary for the formation of the mitotic spindle in mitosis and meiosis [1].

Several other genes, including **CDK5RAP2**, **CENPJ**, **MCPH1**, and **STIL**, have been reported to cause MCPH in a small number of families.
- Homozygous mutations in **CDK5RAP2** [OMIM #608201] have been identified in three Pakistani families with MCPH [4,5]. CDK5RAP2 is a centrosomal protein and may be involved in microtubule production during mitosis [1].
- Four Pakistani families with MCPH have been reported with homozygous mutations in **CENPJ** [OMIM #609279] [4,6]. CENPJ is a centrosomal protein and likely shares a very similar role with CDK5RAP2 [1].
- Homozygous mutations in **MCPH1** [OMIM #607117] have been reported in multiple populations, including at least one Pakistani family and at least one Caucasian family [7-9]. **MCPH1** encodes the Microcephalin protein, which is believed to play a role in cell-cycle timing [1].
- Kumar, et al (2009) reported three Indian families with MCPH that were homozygous for mutations in **STIL** [OMIM #181590]. STIL is necessary for proper mitotic spindle organization [10].

Other Microcephaly Disorders:

Autosomal recessive microcephaly, infantile-onset seizures, and developmental delay (MCSZ) [OMIM #613402] and microcephaly, cortical malformations, and MR [OMIM #600176] are more severe disorders.

In patients with MCSZ, MR is usually severe to profound with variable behavioral problems and seizures are severe and intractable. Mutations in the **PNKP** [OMIM #605610] gene have been described in seven families with MCSZ. Both homozygous, consanguineous patients and compound heterozygotes were reported. The **PNKP** protein is involved in DNA repair of both double and single-stranded breaks. Of the 14 patients described, none have reported a higher frequency of infections and no cancers have been reported by the age of 21 [11].

Patients with microcephaly, cortical malformations, and MR have moderate to severe MR and brain malformations including: callosal abnormalities, polymicrogyria, schizencephaly and subcortical heterotopia.
Some of these patients have also been described with seizures [12]. This form of MCPH is caused by mutations in the WDR62 [OMIM#613583] gene. Homozygous missense and frameshift mutations were first reported in seven consanguineous families with primary microcephaly and simplified gyri. Like other MCPH genes, WDR62 encodes a spindle pole protein that is expressed in neuronal precursor cells undergoing mitosis in the proliferative phase of neurogenesis [13].

Clinical Work-up and Counseling:
Empiric studies have shown that nonconsanguineous couples having one child with MCPH and normal chromosomes and neuroimaging have a 20% risk of recurrence [14]. Recurrence risk for parents of an affected individual with a confirmed mutation causing MCPH is 25%.

Epidemiology:
MCPH occurs in approximately 1 in 10,000 individuals in Pakistan and an estimated 1 in 1,000,000 in the Caucasian population [1]. It is more common in consanguineous populations. ASPM mutations have been found in all ethnic groups studied [3]. PNKP and WDR62 mutations have been found in several ethnicities, including Palestinian, Turkish, and Mixed European [11-13].

Additional Resources:
- Foundation for Children with Microcephaly
 Phone: 602-487-6445
 email: jenni@childrenwithmicro.org
 www.childrenwithmicro.org

Test methods:
The University of Chicago Laboratory offers mutation analysis of all 28 coding exons and intron/exon boundaries of ASPM, all 16 coding exons and intron/exon boundaries of PNKP, and all 30 coding exons and intron/exon boundaries of WDR62 by direct sequencing of amplification products in both the forward and reverse directions. Physicians may also choose to order our MCPH Tier 2 Panel. This panel includes full gene sequencing for the CDK5RAP2, CENPJ, MCPH1, and STIL genes. Sequencing for these genes cannot be ordered individually.

Please, send a completed Microcephaly Clinical Checklist and patient consent form with each sample.

This information will be used to aid in interpretation of the test result. The clinical data form, along with the test result, will be shared with Dr. Dobyns and stored anonymously in a microcephaly database. Patients with microcephaly, with or without gene mutations, can enroll in Dr. Dobyns’ research study. Please contact him at wbd@u.washington.edu for more information.
ASPM sequence analysis
Sample specifications: 3 to 10 cc of blood in a purple top (EDTA) tube
Cost: $2400
CPT codes: 83891, 83898 x 9, 83904 x 9, 83912
Turn-around time: 6 - 8 weeks
Note: We cannot bill insurance for ASPM sequencing.

PNKP sequence analysis
Sample specifications: 3 to 10 cc of blood in a purple top (EDTA) tube
Cost: $1675
CPT codes: 83891, 83898 x 4, 83904 x 7, 83912
Turn-around time: 4 - 6 weeks

WDR62 sequence analysis
Sample specifications: 3 to 10 cc of blood in a purple top (EDTA) tube
Cost: $2400
CPT codes: 83891, 83898 x 9, 83904 x 9, 83912
Turn-around time: 4 - 6 weeks

MCPH Tier 2 Panel (CDK5RAP2, CENPJ, MCPH1, and STIL sequence analysis)
Sample specifications: 3 to 10 cc of blood in a purple top (EDTA) tube
Cost: $3150
CPT codes: 83891, 83898 x 12, 83904 x 12, 83912
Turn-around time: 8 - 10 weeks
Note: We cannot bill insurance for MCPH Tier 2 Panel.

Targeted analysis for a known sequence change in additional family members
Sample specifications: 3 to 10 cc of blood in a purple top (EDTA) tube
Cost: $390
CPT codes: 83891, 83898 x 2, 83894, 83912
Turn-around time: 2 - 4 weeks

Prenatal testing for a known mutation(s)
Sample specifications: 2 T25 flasks of cultured cells from amnio or CVS or 10ml of amniotic fluid
Cost: $590
CPT codes: 83891, 83898 x 2, 83894, 83912, 99051
Turn-around time: 1-2 weeks

References: