Clinical Features:

Most cases of breast or ovarian cancer are sporadic; however, 5-10% of breast and ovarian cancers are considered hereditary. The BRCA1 and BRCA2 genes are responsible for approximately two thirds of all breast cancers among families in the United States and Europe that show a pattern of autosomal dominant transmission. The presence of a mutation in either BRCA1 or BRCA2 increases an individual's lifetime risk of developing cancer to up to 85% [1]. Breast cancer is also a common feature of Li-Fraumeni syndrome due to TP53 mutations and of Cowden syndrome due to PTEN mutations. Other genetic syndromes may include breast cancer as an associated feature, including Peutz-Jeghers syndrome and heterozygous carriers of the ataxia telangiectasia [1]. Ovarian cancer has also been associated with Lynch syndrome [2].

Our Comprehensive Hereditary Breast/Ovarian Cancer Panel includes sequence and deletion/duplication analysis of the 18 genes listed below. Other smaller panels are also available, please see below for more details.

Hereditary Breast/Ovarian Cancer Panel genes and associated cancer syndromes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Associated Syndrome</th>
<th>Cancer Risk</th>
<th>Management Guidelines</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>Biallelic mutations are associated with ataxia telangiectasia (A-T).</td>
<td>The lifetime risk for cancer for individuals with A-T is 30-40%, with leukemia and lymphoma accounting for the majority of malignancies. Breast cancer relative risk is 2.37 (95% CI 1.5–3.8). Other cancers include ovarian cancer, gastric cancer, and medulloblastoma.</td>
<td>NCCN-BR/OV, ACS Breast MRI</td>
<td>[3, 4]</td>
</tr>
<tr>
<td>BARD1</td>
<td>N/A</td>
<td>Increased risk of breast and ovarian cancer.</td>
<td>N/A</td>
<td>[5]</td>
</tr>
<tr>
<td>BRCA1</td>
<td>Hereditary breast and ovarian cancer syndrome</td>
<td>The lifetime risk of breast cancer or ovarian cancer is as high as 80%. The risk of other types of cancer is also increased, including fallopian tube cancer, prostate cancer, male breast cancer, and pancreatic cancer.</td>
<td>NCCN-BR/OV, CAPS</td>
<td>[6, 7]</td>
</tr>
<tr>
<td>BRCA2</td>
<td>Hereditary breast and ovarian cancer syndrome</td>
<td>The lifetime risk of breast cancer or ovarian cancer is as high as 80%. The risk of other types of cancer is also increased, including fallopian tube cancer, prostate cancer, male breast cancer, and pancreatic cancer.</td>
<td>NCCN-BR/OV, CAPS</td>
<td>[6, 7]</td>
</tr>
<tr>
<td>BRIP1</td>
<td>Biallelic mutations are associated with Fanconi anemia complementation group J.</td>
<td>Heterozygous truncating mutations in BRIP1 may be associated with a modest increased risk of breast cancer.</td>
<td>N/A</td>
<td>[8, 9]</td>
</tr>
<tr>
<td>CDH1</td>
<td>Hereditary Diffuse Gastric Cancer</td>
<td>The lifetime risk of lobular breast cancer is 39%. The risk of gastric cancer is 70% in men and 56% in women by the age of 80.</td>
<td>NCCN-Gastric</td>
<td>[1, 10]</td>
</tr>
<tr>
<td>CHEK2</td>
<td>N/A</td>
<td>The relative risk of breast cancer in male is 10.3, 95% (CI 3.5–30.0); in female is 1.70 (95% CI 1.3–2.2). The risk of other types of cancer is also increased including prostate and colon cancer.</td>
<td>NCCN-BR/OV, ACS Breast MRI</td>
<td>[1, 4]</td>
</tr>
<tr>
<td>EPCAM</td>
<td>Lynch syndrome, Turcot syndrome, Muir-Torre syndrome</td>
<td>The lifetime risk of colon cancer is 70-80%, endometrial cancer is 20-60%, ovarian cancer is 0.3-20%, gastric cancer is 5-10%, small bowel cancer is 0.4-12%, and urinary tract cancers is 0.2-25%.</td>
<td>NCCN-CRC, CAPS</td>
<td>[7, 11]</td>
</tr>
</tbody>
</table>
PALB2 (FANCN) | Biallelic mutations are associated with Fanconi anemia complementation group N. | The relative risk of breast cancer in women is 2.3 (95% CI 1.4–3.9). The risk of pancreatic cancer is increased. | NCCN-BR/OV, ACS Breast MRI, CAPS [1, 4, 7, 12] |
PTEN | PTEN Hamartoma Tumor Syndrome, Cowden Syndrome | The lifetime risk of breast cancer is 85%. | NCCN-BR/OV [13] |
RAD51C | Biallelic mutations in RAD51C have been identified in patients with Fanconi anemia complementation group O. | Heterozygous germline mutations in RAD51C have been identified as conferring a high penetrance susceptibility to breast and ovarian cancer [14]. | N/A [15] |
RAD51D | N/A | A 10% risk of ovarian cancer by age 80. | N/A [16] |
STK11 | Peutz-Jeghers Syndrome | The lifetime risk of breast cancer is 32% by age 60 and colorectal cancer is 39%-57%. | NCCN-CRC, CAPS [1, 7, 17] |
TP53 | Li-Fraumeni syndrome (LFS) | The lifetime cancer risk for an individual with LFS is greater than 90%. | NCCN-BR/OV [18] |

N/A: Not available.
*Please note variations within exons 1-5, 9 and 11-15 of the PMS2 gene may not be analyzed or reported due to homology issues.

Testing Options

BRCA1 and BRCA2 Mutation Analysis (sequence and deletion/duplication analysis)

- **Cost:** $2500
- **CPT codes:** 81211, 81213
- **Turn-around time:** 4 weeks

BRCA1, BRCA2 and PALB2 Mutation Analysis (sequence and deletion/duplication analysis)

- **Cost:** $2500
- **CPT codes:** 81211, 81213
- **Turn-around time:** 4 weeks

BRCA1, BRCA2 and TP53 Mutation Analysis (sequence and deletion/duplication analysis)

- **Cost:** $2500
- **CPT codes:** 81211, 81213
- **Turn-around time:** 4 weeks

Hereditary Breast and Ovarian Cancer High Risk Panel (sequence and deletion/duplication analysis of BRCA1, BRCA2, CDH1, PALB2, PTEN, STK11, TP53)

- **Cost:** $3500
- **CPT codes:** 81211, 81213
- **Turn-around time:** 4-6 weeks

Comprehensive Hereditary Breast/Ovarian Cancer Panel (sequence and deletion/duplication analysis of all 18 genes)

- **Cost:** $3500
- **CPT codes:** 81211, 81213
- **Turn-around time:** 4-6 weeks

3 Ashkenazi BRCA1 and BRCA2 mutations

- **Cost:** $500
- **CPT codes:** 81212
- **Turn-around time:** 3 weeks

Testing methods:
Comprehensive sequence coverage of the coding regions and splice junctions of all genes in this panel is performed. Targets of interests are enriched and prepared for sequencing using the Agilent SureSelect system. Sequencing is performed using Illumina technology and reads are aligned to the reference genome. Additional analysis is performed using in silico tools and bioinformatics approaches.
sequence. Variants are identified and evaluated using a custom collection of bioinformatic tools and comprehensively interpreted by our team of directors and genetic counselors. All pathogenic and likely pathogenic variants are confirmed by Sanger sequencing. The technical sensitivity of this test is estimated to be >99% for single nucleotide changes and insertions and deletions of less than 20 bp. Deletion/duplication analysis of the panel genes is performed by oligonucleotide array-CGH. Partial exonic copy number changes and rearrangements of less than 400 bp may not be detected by array-CGH. Array-CGH will not detect low-level mosaicism, balanced translocations, inversions, or point mutations that may be responsible for the clinical phenotype. The sensitivity of this assay may be reduced when DNA is extracted by an outside laboratory.

Results:
Results, along with an interpretive report, are faxed to the referring physician as soon as they are completed. One report will be issued for the entire panel. All abnormal results are reported by telephone.

References: