Intracellular accumulation of autofluorescent lipopigment storage material can be observed by doing electron microscopy (EM) studies on tissue or lymphocytes; subtypes of NCL may be differentiated by different ultra-structural patterns seen on EM.

<table>
<thead>
<tr>
<th>Neuronal Ceroid-Lipofuscinoses Panel</th>
<th>Gene</th>
<th>Disorder</th>
<th>Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLN3</td>
<td>CLN3</td>
<td>Mutations in CLN3 are the main cause of classic juvenile NCL [1]. The first symptom is typically insidious onset of retinitis pigmentosa at age 4-6 years, followed by progressive cognitive decline and seizures [2]. Other symptoms may include myoclonus, parkinsonism, severe dystarhria and behavioral issues with angry outbursts and physical violence [2]. CLN3 mutations may also be associated with adult NCL in some cases [1]. The CLN3 protein localizes to the lysosomes, and has been hypothesized to play a role in regulating neuronal cell death [3].</td>
<td></td>
</tr>
<tr>
<td>CLN5</td>
<td>CLN5</td>
<td>Mutations in CLN5 are associated with the Finnish variant of late infantile NCL. The disorder was first identified in 18 Finnish families of common ancestry, with features including intellectual disability, ataxia and myoclonic epilepsy [4]. Age of onset is typically around age 4-7 years [4]. Mutations in CLN5 have since been described outside of the Finnish population. CLN5 mutations may also be associated with adult NCL in some cases [1]. CLN5 is a lysosomal protein, and mutations in this gene are associated with defective lysosomal trafficking [5].</td>
<td></td>
</tr>
<tr>
<td>CLN6</td>
<td>CLN6</td>
<td>CLN6 mutations are associated with the “Early Juvenile” variant of late infantile NCL. Age of onset is typically around between 1-8 years, and presenting symptoms typically include vision loss and seizures [1]. For children with age of onset after 4 years, epilepsy, ataxia and myoclonus may be the presenting features [1]. Studies of CLN6 mouse models revealed changes in the expression levels of proteins involved in synaptic function and stability and cell-cycle regulation [6].</td>
<td></td>
</tr>
<tr>
<td>CLN8</td>
<td>CLN8</td>
<td>Mutations in the CLN8 gene can be associated with either the “Northern Epilepsy” variant of NCL (NE), or late infantile NCL [1]. The NE phenotype is characterized by tonic-clonic or complex-partial seizures, intellectual decline and motor dysfunction [1]. There is a specific mutation in CLN8 which is associated with the NE phenotype, which has a founder effect in the Finnish population [1]. CLN8 is a transmembrane protein in the endoplasmic reticulum, and functional studies have found that neuronal cellular proliferation is increased in cell lines with CLN8 mutations [7].</td>
<td></td>
</tr>
<tr>
<td>CTSD</td>
<td>CLN10</td>
<td>CTSD mutations have been identified in patients with congenital NCL, which is the most severe NCL subtype [8]. Findings include microcephaly, seizures, extensive neural loss, gliosis and early death [8]. CTSD mutations may also be observed in other subtypes of NCL, including late infantile, juvenile and adult [1, 8]. CTSD encodes for a lysosomal proteinase involved in proteolytic degradation, cell invasion and apoptosis. It has been hypothesized that patients who retain some residual enzyme activity have a less severe phenotype and a later age of onset than those with complete loss of activity [8].</td>
<td></td>
</tr>
<tr>
<td>CTSF</td>
<td>CLN13</td>
<td>Mutations in CTSF are associated with adult onset NCL, known as CLN13 or Kufs disease type B. Features include seizures, ataxia, dystarhria, cerebellar and cortical atrophy, progressive cognitive decline, and progressive dementia [9]. The CTSF gene encodes cathepsin F, a cysteine protease involved in lysosomal proteolytic activity. Tang, et al. (2006) found that deficiency of cathepsin F in mice leads to neuronal lipofuscinosis and late-onset neurological disease [10].</td>
<td></td>
</tr>
<tr>
<td>DNAJC5</td>
<td>CLN4</td>
<td>Heterozygous mutations in DNAJC5 have been described in families with an autosomal dominant form of NCL with symptoms arising in adulthood. Features</td>
<td></td>
</tr>
</tbody>
</table>

Our Neuronal Ceroid-Lipofuscinoses Panel includes sequence and deletion/duplication analysis of all 11 genes listed above.
include seizures, myoclonus, cognitive decline and dementia. Burneo, et al. (2003) reported a family with CLN4 in which multiple individuals exhibited parkinsonism [11]. Missense and frameshift mutations have been reported [12].

<table>
<thead>
<tr>
<th>Gene</th>
<th>Genes Tested</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRN [OMIM#138945]</td>
<td>CLN11 [OMIM#614706]</td>
<td>Smith, et al. (2012) identified a homozygous frameshift mutation in GRN in two siblings with neuronal ceroid lipofuscinosis [13]. These individuals exhibited onset of symptoms in their early 20s, with retinal dystrophy, seizures, myoclonus, and cerebellar atrophy [14]. Both patients had normal cognitive functioning at the time of evaluation, at which time they were in their mid to late 20s. Electron microscopy on peripheral blood leukocytes in these patients revealed fingerprint profiles in 1/100 lymphocytes [14]. Heterozygous mutations in GRN are associated with frontotemporal lobar degeneration with TDP43 inclusions (FTLD-TDP) [OMIM# 607485].</td>
</tr>
<tr>
<td>MFSD8 [OMIM#611124]</td>
<td>CLN7 [OMIM#610951]</td>
<td>Mutations in MFSD8 are associated with a variant of late infantile NCL [15]. Mutations were first identified in Turkish patients who presented with seizures and/or motor impairment at an average age of 5 years [15]. The patients later developed developmental regression, myoclonus, speech impairment, vision loss and personality disorders [15]. The MFSD8 protein localizes to the lysosome and functions as a transporter protein, however further details regarding the function of the MFSD8 protein are yet to be elucidated [15].</td>
</tr>
<tr>
<td>PPT1 [OMIM#600722]</td>
<td>CLN1 [OMIM#256730]</td>
<td>PPT1 mutations have been described in association with several different subtypes of NCL, including infantile, late infantile, juvenile and adult [1]. PPT1 encodes a lysosomal enzyme with “housekeeping” role, it has also been hypothesized to play a role in synaptic functioning [1, 16].</td>
</tr>
<tr>
<td>TPP1 [OMIM#607998]</td>
<td>CLN2 [OMIM#204500]</td>
<td>Mutations in TPP1 are typically associated with classic late infantile NCL, and age of onset is typically around 2-4 years. Presenting symptoms are usually seizures, cognitive decline and vision loss [1, 17]. TPP1 is also a rare cause of JNCL [1]. TPP1 encodes for a serine-carboxyl peptidase that localizes to the lysosome [1].</td>
</tr>
</tbody>
</table>

Inheritance:
The NCLs are typically inherited in an autosomal recessive pattern. Parents of an affected child are most likely obligate carriers. Recurrence risk for carrier parents is 25%. Adult NCL, which can be associated with mutations in CLN3, CLN5, CLN6, CTSD and PPT1, can be inherited in either an autosomal recessive or autosomal dominant pattern. Most individuals with autosomal dominant adult NCL have an affected parent. The proportion of de novo cases is unknown. Recurrence risk for affected individuals with autosomal dominant adult NCL is 50%.

Test methods:
Comprehensive sequence coverage of the coding regions and splice junctions of all genes in this panel is performed. Targets of interests are enriched and prepared for sequencing using the Agilent SureSelect system. Sequencing is performed using Illumina technology and reads are aligned to the reference sequence. Variants are identified and evaluated using a custom collection of bioinformatic tools and comprehensively interpreted by our team of directors and genetic counselors. All pathogenic and likely pathogenic variants are confirmed by Sanger sequencing. The technical sensitivity of this test is estimated to be >99% for single nucleotide changes and insertions and deletions of less than 20 bp. Our CNV detection algorithm was developed and its performance determined for the sole purpose of identifying deletions and duplications within the coding region of the gene(s) tested. Partial exonic copy number changes and rearrangements of less than 400 bp may not be detected by this methodology. Regions of high homology and repetitive regions may not be analyzed. This methodology will not detect low level mosaicism, balanced translocations, inversions, or point mutations that may be responsible for the clinical phenotype. The sensitivity of our deletion/duplication assay may be reduced when DNA extracted by an outside laboratory is provided.

Neuronal Cerdoid-Lipofuscinoses Panel (11 genes)
- Sample specifications: 3 to 10 cc of blood in a purple top (EDTA) tube
- Cost: $2000
- CPT codes: 81406, 81407
- Turn-around time: 8 weeks

Note: We cannot bill insurance for the Neuronal Cerdoid-Lipofuscinoses panel
Note: The sensitivity of our assay may be reduced when DNA is extracted by an outside laboratory.

Results:
Results, along with an interpretive report, are faxed to the referring physician as soon as they are completed. One report will be issued for the entire Neuronal Cerdoid-Lipofuscinoses Panel. All abnormal results are reported by telephone.

For more information about our testing options, please visit our website at dnatesting.uchicago.edu or contact us at 773-834-0555.

References:
dnatesting.uchicago.edu • 773-834-0555

06/19

Committed to CUSTOMIZED DIAGNOSTICS, TRANSLATIONAL RESEARCH & YOUR PATIENTS’ NEEDS